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ABSTRACT

The effect of liguid surface motion on the vapor condensation
in a tank mixed by an axial turbulent jet is numerically
investigated. The average value (over the interface area) of
the root-mean-squared (rms) turbulent velocity at the inter-
face is shown to be linearly increasing with decr°a51ng
liquid height and increasing jet diameter for a given tank
size. The average rms turbulent velocity is incorporated in
Brown et al. (1990) condensation correlation to predwcu the
condensation of vapor on a liquid suriace. The results are
in good agreement with available condensation data.

1. INTRODUCTION

The interface condensation process which is principally con-
trolled by liquid motion in & partially filled tank is of
interest to space-based systems. In space environment, &
preferred method to control cryogenic storage tank pressure
is the use of jet-induced mixing (Aydelott, et al., 1985;
Poth and Van Hook, 1972). For a laminar jet the lnter:ace
condensation rate could be simply ‘determined by the jet
volume flow rate and jet subcooling (Lin, 1989; Hasan and
Lin, 1990; and Lin and Hasan, 1990). However, the space-
based systems are dimensionally large. The axial jet mixing
system in most applications will be turbulent. Sonin et al.
(1986); Brown et al (1989); and Brown et al. (1990) obtained
an empirical correlation for the rate at which a pure vapor
condenses on the free surface of a turbulent liquid in a
steam-water system, for conditions where buoyancy effects are
insignificant.

Figure 1 shows the physical system and the’coordinates simi-
lar to that used in Brown and Sonin’'s steam—-water condensa-
tion experiments (Sonin, et al., 1986; Brown, et al., 1989).
The system ConSiSLS of a vertical cylindrical tank of diame-
ter D, partially filled with water. A steady turbulence 1is
created in the water by an axial jet which is directed toward
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FIGURE 1. Physical system and coordinates.

the free surface from below, with the water circulating in a
closed loop (not shown here) through a pump and cooler.
Thus, a certain degree of subcooled axial jet flow can be
maintained to induce vapor condensation at the surface. It
was shown by Brown et al. (1990) that, for high jet submer-
gence H/D > 3.1 and at conditions where buoyancy effect are
insignificant, the condensation mass flux m_ of the pure
vapor at the turbulent surface of its liquid is given by

3
st = 0.0198[1 - _aJpr*"” (1)
2

The condensation Stanton number is based on the condensation
heat flux ("%hw)’ the local bulk liquid subcooling

(T, - T,.), and the local rms value of turbulent veloc-

ity (v]) extrapolated from the bulk to the surface. For
high jet submergence range 3.1 < H/D < 4.2, a correlation for
the average value of rms turbulant velocity over the inter-

face, v!, was given by Brown et al. (1990):

Q
vl =21.1 2]e?* (2)
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Brown et al. (1989) also conducted experiments to measure

the mass condensation rate for jet submergence range

0.5 < H/D < 3. However, the turbulence intensity was not
measured. Following Thomas (1979), they modeled the interfa-
cial turbulence intensity distribution and obtained an
expression for the average value of v/ over the interface

as

. ujd
vl = — 10.46, - (7.14p, - 3.06p,)

(3)
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where (B, and [, are constants to be determined. Assuming
Eg. (1) also applies to the low jet submergence, the conden-
sation data of Brown et al. (1989) yield

B, =0.3¢ B, =0.24 (4)

The purpose of this study is to numerically determine the
value of Gf by exactly solving for the entire flow field
in a tank with 0.5 < H/D < 3. The liquid-side turbulence as
a function of relevant parametcers is determined and incorpo-
rated in Eq. (1) to predict the vapor condensation rate and
compared with the experimental data of Brown et al. (1989).

2. PROBLEM FORMULATION AND MATHEMATICAL MODELING

The physical system and coorcinates are shown in Fig. 1. An
axial liquid jet of diameter d and of velocity u,, located
at the tank bottom, is continuously introduced into” the tank
along the tank centerline. Liquid is withdrawn from the
outer portion of the tank botzom with a withdrawing area of
A .- The volume flow rate of the liquid withdrawn is the
sime as that of the injected liquid jet such that the liquid
level height H of the tank (or jet submergence) is main-
tained constant. The effect of vapor motion on the liquid
turbulence is assumed negligible. Also the liquid surface is
assumed to be flat.

The jet-induced mixing problem considered in the present
study is steady-state and incompressible with gravity acting
in the vertical negative-x direction. The dimensionless form
of continuity and momentum ecuations with K-e¢ turbulence
model are expressed as

au+_1_6(rv)=o (5)

ax* ' oar’
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where the turbulence production term, G, 1is defined as

2 2 2 2
du’ v’ v’ du® av’ (10)
G =2 —! +|——} +] — + +
ax’ ar’ r’ ar® ax’

and the empirical constants associated with the turbulence
model are

C, = 1.44, Cc, =1.92, and C_ =0.09 (11)

Boundary conditions are required to solve the partial differ-
ential Egs. (5) to (9). At the centerline, the symmetric
conditions are used. No-slip conditions for velocities are
applied at the solid walls. Wall functions (Launder and
Spalding, 1974) are used to calculate shear stress and are
included as a source term in the governing equation for the
velocity component parallel to the wall. For the axial jet,
uniform velocity is assumed. The turbulent kinetic energy of
the jet is set to be uniform at a specified level. The
distribution of the dissipation rate 1s given by

KtJ/Z
T C3/4 i (12)

where 1 is the mixing length scale (Escudier, 1966).

Uniform velocity at the liquid-withdrawn plane is also
assumed:

u.. = - and v__. =0 (13)
A

Qut

At the free surface, zero axial velocity and shear-free
conditions are used:

. av‘
u =0 and 0 (14)
ax’

Net fluxes of turbulent quantities K* and ¢* are assumed
zero at the free surface and liquid withdrawn-plane:

BK' 68. aK‘ ae' _ (15)

ax" ax’ ax”’ ax”’

L s out out



The governing equations are numerically solved by a finite-
difference method. Nonuniform grid distribution is used with
concentration of the grid nodes in the centerline, near-wall,
and near-interface regions where the gradients of flow prop-
erties are expected to be large. The essential features of
the numerical scheme are described in Lin (1989) and Lin and
Hasan (1990).

The grid patterns of 60 by 41 and 84 by 41 have been shown to
give reasonably grid-independent solutions for Ar < 1 and
2.5 > Ar > 1, respectively. The convergent solutions are
considered to be reached when the maximum of absolute resid-
ual sums for u*, v*, and K* variables is less than 10 .

In the present study, calculations are performed to cover a
wide range of the parameters Re, D/d and Ar: 10 000

< Re; < 60 000, 15 < D/d < 70, and 0.5 < H/D < 2.5. The

value of K, is fixed at 0.005 and A /A = 80.

3. RESULTS AND ANALYSIS

The effects of the jet Reynolds number (Re,), aspect ratio
(Ar) and tank to jet diameter ratio (D/d) on the turbulent
quantities at and near the interface are of particular inter-
est. Numerical solutions show that the dimensionless turbu-
lent kinetic energy distribution (XK*) at the interface is
slightly increasing with Re . However, this increase is so

insignificant that the average value of K: over the inter-
face 1s essentially independent of Re. as shown in Fig. 2.
Figure 3 shows the distribution of dimensionless turbulent

. . . * .
kinetic energy at the interface (K, ) as a function of aspect
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FIGURE 2. Average turbulent FIGURE 3. Effects of tank
kinetic energy at the inter- aspect ratio and tank to jet
face as a function of jet diameter ratio on the turbu-
Reynolds number (H/D = 0.967, lent kinetic energy at the
D/d = 23.6). interface (Re, = 20 000).



ratio, Ar, and tank to jet diameter ratio, D/d. An increase
in either Ar or D/d results in a lower level of turbulent
kinetic energy at the interface. This is because, for
greater Ar or D/d, more energy is dissipated and less
energy remains when the interface is reached. Also, greater
values of Ar and D/d yield more uniform radial distribu-

*
tion of K,. For Ar greater than 3, the rms turbulent veloc-
ities were found to be nearly uniform at and near the

interface (Sonin et al., 1986).

Komori et al. (1982) measured the turbulence intensities,
i.e., rms values of three components of velocity fluctua-
tions, in an open channel flow. It was observed that near
the free surface, the intensity of vertical fluctuation
decreases while the fluctuations parallel to the surface are
promoted. This behavior has also been observed by Sonin

et al. (1986) in a _flow system similar to Fig. 1. At the
interface, since the axial component of fluctuating velocity
is damped out, only radial and circumferential turbulent
velocities contribute to the turbulent kinetic energy. From
the measurements of Komori et al. (1982), it can be seen that
the turbulent intensities parallel to the free surface are
nearly equal at the free surface. Thus, for an open channel
flow, the rms value of the turbulent velocity at the free
surface is approximately equal to the square-roct of its

turbulent kinetic energy. The average value of v /* over
the interface can be calculated by

. . . /2 o . ‘
v!* = SJZS v;‘r' dr® = 8[25 st r°dr (16)

However, for the axial jet problem in the present study, the
two components of interfacial turbulent velocity in the
direction parallel to the interface may be signiiicantly
different. This observation is based on the experiments of a
turbulent radial wall jet performed by Poreh et al. (1967).
Therefore, the averaging process of Eg. (16) may not be
appropriate. An alternative is to calculate the average
value of the dimensionless turbulent kinetic energy over the

interface by

‘=sj°'5 K'r"dr® (17)
S 0 k1

and obtain the average value of rms dimensionless turbulent
velocity by

—,1/2 (].8)

Equation (18) can be considered as a system value of rms
dimensionless turbulent velocity at the interface and is used

as the definition of v /" 1in the present study. It is

7
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Substituting Egs. (1) and (19) into Eqg. (20), the dimension-
less system condensation rate (II) becomes

H
I[1 =0.0602 ~0.0163_— (21)
D

where I = m_c h:g D d Pr°'”/[pCij(Ts - T, (Ll - Ja/2)] as

defined in Brown et al. (1989). Figure 6 shows good agree-
ment between the measurement of Brown et al. (1989) and
Eq. (21). Therefore, Eg. (21), based on the definition of

Egq. (18) to predict v *® can be incorporated with Brown

et al. (1990) condensation correlation for the condensation
rate of a vapor with low jet submergence. Based on Eg. (19),
the corresponding values of [ and [, for Eg. (3) are
given by

B, =0.33 and f, =0.23 (22)

which is in very good agreement with Eq. (4) in the model of
Brown et al. (1989).

Dimensionless system condensation rate, 11

o
d/D o} -
a 1/24
i~ o 1/64 } Data
Prediction

| l | | J
5 1.0 15 20 25 3.0
H/D

FIGURE 6. Comparison of Eg. (21) and
Experimental data of Brown et al. (1989).
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4. CONCLUSIONS

For an axial jet-induced mixing system as shown in
Fig. 1, numerical calculations based on the assumptions
and ranges of parameters considered lead to the following
conclusions:

0 The radial distribution of turbulent kinetic energy
at the interface (K,) is more uniform for greater Ar and
D/d with the maximum value located at the centerline. The
average value of dimensionless turbulent kinetic energy over
the interface is essentially lndependent of jet Reynolds
number (Re,) and decreases with increasing aspect ratio (Ar)
and tank to jet diameter ratio (D/d). However, experimental
data are required for further quantitative evaluation.

o The average (system) value of rms turbulent velocity

(v *) over the interface is linearly increasing with
decreasing Ar and (D/d) for 0.5 < Ar < 2.5 and 15 < D/d

< 70. Equation (19) for the prediction of V? can be
incorporated with Brown et al. (1990) condensation correla-

tion (Eq. (1)), for the vapor condensation rate in a tank
mixed by an axial turbulent jet.

NOMENCLATURE

AjA,. surface area of the jet and outflow

Ar,B aspect ratio, H/D, tank to jet diameter ratio,

D/d

C, specific heat at constant pressure

d,D jet diameter, tank diameter

g acceleration due to gravity

H jet submergence depth

b, latent heat of condensation

Ja Jakob number, CP(TS_'—’I‘OM)/h:g

K’ dimensionless turbulent K.E., K™ = K/uj

1. mixing length scale

m, local condensation mass flux

Pr Prandtl number of bulk liquid

P/P, pressure, equilibrium hydrostatic pressure
) dimensionless pressure, p = (p-—pg)/(pub
; jet volume flow rate

r dimensionless radial coordinate, r/D

Re, jet Reynolds number, pu, d/u

St, local condensation Stanton number,

hfg/[pcg(Ts - Tcut)vs’ ]
10



T.,T T temperature of the jet, outflow, and interface,

3! Tout’ “a

respectively
u’ dimensionless axial mean velocity, u/uj
v dimensionless radial mean velocity, v/uj
v rms turbulent velocity
Vv dimensionless rms turbulent velocity, t//uj
x dimensionless axial coordinate, x/D

Greek symbols

~

€ dimensionless dissipation rate of turbulent
kinetic energy, e/(u?/D)

II dimensionless system condensation rate

7 dynamic viscosity

B, 5, empirical constants in EqQ. (3)

p liquid density

Oy Prandtl number in K equation, o, = 1.0
g, Prandtl number in ¢ equation, O, = 1.23
Subscripts

j evaluated at jet inlet

out evaluated at outflow location

s evaluated at liquid-vapor interface
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